Модель Харрода-Домара

Модель Харрода-Домара (Harrod-Domar growth model) — динамическая модель равновесия в условиях полной занятости. Согласно этой модели для поддержания полной занятости совокупный спрос должен увеличиваться пропорционально экономическому росту. В этой модели, таким образом, подчеркивается важное значение совокупного спроса как для экономического роста, так и, соответственно, для достижения полной занятости.

Пример модели

В качестве примера модели с непрерывным временем рассмотрим модель макроэкономической динамики (простейший ее вариант — модель Харрода-Домара). Модель описывает динамику дохода Y(t), который рассматривается как сумма потребления C(t) и инвестиций I(t). Экономика считается закрытой; поэтому чистый экспорт равен нулю, а государственные расходы в модели не выделяются. Основная предпосылка модели роста — формула взаимосвязи между инвестициями и скоростью роста дохода. Предполагается, что скорость роста дохода пропорциональна инвестициям:

I(t)\;=\;B\;\cdot\;(dY/dt),

где B — коэффициент капиталоемкости прироста дохода, или приростной капиталоемкости (соответственно, обратная ему величина 1/B называется приростной капиталоотдачей. Тем самым в модель фактически включаются следующие предпосылки:

Линейная производственная функция Y(t)\;=\;aL(t)\;+\;bK(t)\;+\;c,

где b\;=\;1/B, обладает этим свойством в том случае, если либо a\;=\;0, либо L(t)\;=\;const.

Тем самым следующая предпосылка такова:

Перечисленные предпосылки, конечно, существенно огрубляют описание динамики реальных макроэкономических процессов, делают затруднительным применение данной модели, например, для непосредственного расчета или прогноза величины совокупного выпуска или дохода. Однако данная модель и не предназначена для этого; в то же время ее относительная простота позволяет более глубоко изучить взаимосвязь динамики инвестиций и роста выпуска, получить точные формулы траекторий рассматриваемых параметров при сделанных предпосылках.

Зависимость, связывающая между собой во времени показатели инвестиций, определяемый ими объем основного капитала и уровень выпуска (дохода), является базовой во всех моделях макроэкономической динамики. Кроме того, в этих моделях необходимо определить принципы формирования структуры выпуска (дохода), распределения его между составляющими, прежде всего — между потреблением и накоплением.

Эти принципы могут основываться на оптимизационном подходе (обычно это максимизация совокупных объемов потребления в той или иной форме), экстраполяционном, равновесном и других. В рассматриваемой модели предполагается, что динамика объема потребления C(t) задается экзогенно. Этот показатель может считаться постоянным во времени, расти с заданным постоянным темпом или иметь какую-либо другую динамику.

Простейший вариант модели получается, если считать C(t)\;=\;0. Этот случай совершенно нереалистичен с практической точки зрения, однако в нем все ресурсы направляются на инвестиции, в результате чего могут быть определены максимальные технически возможные темпы роста. В этом случае получаем:

Y(t)\;=\;C(t)\;+\;I(t)\;=\;0\;+\;\frac{BdY(t)}{dt}\;=\;BY'(t).

Это — линейное однородное дифференциальное уравнение, и его решение имеет вид Y(t)\;=\;U(O)e^{(1/B)t} (что легко проверить дифференцированием). Непрерывный темп прироста здесь равен — 1/B. Это максимально возможный (технологический) темп прироста.